If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90n^2-50n-20=0
a = 90; b = -50; c = -20;
Δ = b2-4ac
Δ = -502-4·90·(-20)
Δ = 9700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9700}=\sqrt{100*97}=\sqrt{100}*\sqrt{97}=10\sqrt{97}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{97}}{2*90}=\frac{50-10\sqrt{97}}{180} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{97}}{2*90}=\frac{50+10\sqrt{97}}{180} $
| 11^5x=16^x+5 | | m4+3m3-11m2-3m+10=0 | | 5p-8=1+5p | | a^2-9a-45a=0 | | -3–5n=-1 | | a^-9a-45=0 | | 0.7x2-4.3x+5.5=16000000 | | 252=146-u | | 4x+60+10x-4=88 | | 3y+11=55 | | 2/3x=3/4x-1 | | (x-39)/2=28 | | x-39/2=28 | | 80+75+x=180 | | -7(8-x)=3x-4 | | 70-2x+84-3x=180 | | -8(8-x)=3x-4 | | 59=10t+36t | | (5x+4)=(7x-36) | | 180=90+2x-10+x+25 | | 15-5x=18+4x | | 5x+10=x-20 | | 12x+8-3=-91 | | 6(t-2)=-66 | | 540=4x+240 | | 35+(-2w)=17 | | 540=3x+240 | | -x+13=4(x+12) | | 3.5m=0.75=-6.25 | | 9x-7=22 | | -7-8x=9 | | 360=35+127+65+x |